Telegram Group & Telegram Channel
Какие метрики для оценки схожести текстов вам известны?

Метрики близости текстов можно условно разделить на два типа: лексические и семантические.

🔹 Лексические
— Сходство Жаккара (Jaccard similarity)
Это простая метрика, которая вычисляется следующим образом: берутся две последовательности A и B, определяются общие элементы, и их количество делится на общее количество элементов в обеих последовательностях.

🔹 Семантические
— Косинусное сходство (cosine similarity)
Эта метрика измеряет косинус угла между двумя векторами, которые представляют тексты в векторном пространстве (часто используется векторизация TF-IDF).
— Евклидово расстояние (euclidean distance)
Измеряет кратчайшее расстояние между двумя точками в евклидовой геометрии. Для этого также требуется предварительная векторизация текстов.



tg-me.com/ds_interview_lib/770
Create:
Last Update:

Какие метрики для оценки схожести текстов вам известны?

Метрики близости текстов можно условно разделить на два типа: лексические и семантические.

🔹 Лексические
— Сходство Жаккара (Jaccard similarity)
Это простая метрика, которая вычисляется следующим образом: берутся две последовательности A и B, определяются общие элементы, и их количество делится на общее количество элементов в обеих последовательностях.

🔹 Семантические
— Косинусное сходство (cosine similarity)
Эта метрика измеряет косинус угла между двумя векторами, которые представляют тексты в векторном пространстве (часто используется векторизация TF-IDF).
— Евклидово расстояние (euclidean distance)
Измеряет кратчайшее расстояние между двумя точками в евклидовой геометрии. Для этого также требуется предварительная векторизация текстов.

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/770

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

To pay the bills, Mr. Durov is issuing investors $1 billion to $1.5 billion of company debt, with the promise of discounted equity if the company eventually goes public, the people briefed on the plans said. He has also announced plans to start selling ads in public Telegram channels as soon as later this year, as well as offering other premium services for businesses and users.

The S&P 500 slumped 1.8% on Monday and Tuesday, thanks to China Evergrande, the Chinese property company that looks like it is ready to default on its more-than $300 billion in debt. Cries of the next Lehman Brothers—or maybe the next Silverado?—echoed through the canyons of Wall Street as investors prepared for the worst.

Библиотека собеса по Data Science | вопросы с собеседований from us


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA